Lower Extremity Screening

By: Michael Hauber, PT, DPT

Objectives

- 1. Review injury risk factors associated with lower extremity.
- 2. Define the purpose of performing a screen versus an assessment.
- 3. Analyze commonly used lower extremity screening tests for youth athletes.
- 4. Identify the efficacy of lower extremity screening tests in predicting injuries.
- 5. Demonstrate an example of a lower extremity screen and breakout.

General Injury Risk Factors: Non-modifiable

• Age²⁵

- Highest incidence: ages 15-17
- Sex (females>males)¹⁵
- ****Previous injury****^{2,6,15,22,23,28}
- Anthropometrics (height, weight)^{7,22,28}
- Bad luck
- <u>Honorable mention</u>: parents who think their son has a "million-dollar arm"

https://i.dailymail.co.uk/1s/2023/12/26/01/79333537-12900397-image-a-1_1703555916901.jpg

FOCUS

on what you can

CONTROL

https://assets-global.websitefiles.com/5e085291ed2a2769a872e587/5f38b1e3add6116ab7ce2dfc_focus%20 %20what%20you%20can%20control%20motivational%20quote%20poster.png

General Injury Risk Factors: Modifiable

- Pain with movement⁶
- Movement asymmetry^{6,8}
- Perceived recovery from injury⁷
- Muscle flexibility too much, too little⁹
- Aerobic fitness^{7,20}
- Power too much, too little⁹
- Speed slower sprint speed⁹
- Training variables:
 - Technique²⁵
 - Programming (intensity, duration): too much, too little²⁵
- Sports equipment²⁵

Lower Extremity Injury Risk Factors

- Hamstring flexibility: too much, too little⁹
- Mobility asymmetry: ankle DF, hip ext⁹
- Strength asymmetry: hip, knee, ankle^{8, 23}
- Foot type: pronation vs supination²³
- Balance⁹
- Jumping/landing mechanics²⁸
- Core stability²⁸

ttps://www.spineandbody.com.au/wp-content/uploads/2016/02/120-degree-leg-lift.jpg

Unique to Adolescents

- Growth spurt (reduced musculotendinous flexibility)²⁵
- Delayed physical maturation status: skeletal age versus chronological age²³
- Growth cartilage: immature growth plate susceptible to stress injury²⁵
- Bone structure:
 - Growing bone is inherently weaker²⁵
 - Predisposition to tendon/ligamentous injury and avulsions²⁵
- Psychological maturity: coping skills, ability to comply with recommendations²⁵
- Key question: what is normal and what is relevant for age, gender, sport?

Screen vs Assessment

- Screen:
 - Risk stratification²⁶
 - Early detection of disease before it manifests²
 - Global movement patterns
 - Low to high threshold
 - Informs whether further assessment is needed.
- Assessment:
 - Designed to dig deeper
 - Break down the pattern into parts
 - Structure vs motor control

What should we screen?

Fitness Jump, hop, strength, endurance, conditioning

Where should we start?

Fundamentals Hinge, squat, step, lunge, balance

Starting Point: Functional Movement Screen

- Movement fundamentals
- Low threshold
- Decision-making
 - Catch pain
 - Qualify movement dysfunction and/or asymmetry
 - Risk analysis
- Key principles: Protect, correct, develop¹²

https://mattdrilias.com/wp-content/uploads/2021/01/Pic-FMS-7-Screens.jpg

Functional Movement Systems

EXOS 3D Performance Profile

- Position: <u>functional</u> <u>mobility for the</u> <u>movement</u>
- 2. Power: strength, power, capacity
- 3. Pattern: coordination
- 4. Performance: *sports-specific production*

Pre-Post-Season Season Season Season

When should we screen?

- Offseason: more time to address
- Preseason: less time to address
- During rehab
 - Progression to higher level movements (run, jump, agility)
 - Return to sport testing
- 1-6 month follow-up post-discharge
- Regular 6-month check-up

Sport-Specific Demands

- Australian National Basketball League game
- Average³:
 - 46 jumps per player
 - 105 sprints (1 every 21 seconds)
 - 1000 movement pattern changes (1 every 2 seconds)
 - Lateral shuffling: 31%
 - Sprints: 10%
- Is the athlete prepared for their sport?

https://static.vecteezy.com/system/resources/previews/006/781/058/original/a-set-of-basketball-move-silhouette-icons-free-vector.jpg

NCAA Basketball

- Higher injury rates pre-season versus in-season³
 - Men: 3X higher in practices
 - Women: 2X higher in practices
- Offseason deconditioning and preseason training demands³
 - Increased raining intensity
 - Increased fatigue
 - Decreased recovery
 - Increased pressure to become starter

Drop Jump Test⁶

- Reliable
- Validity needs more testing
- Significant dynamic knee valgus: <60% normalized knee separation⁶
- Takeaway: record jump/landing mechanics

ttps://moticon.com/wn-content/unloads/2022/09/img-1-blog-dron-jumn-sequenc

Landing Error Scoring System

Landing Error Scoring System

Frontal-Plane Motion 1. Stance width Normal (0) Wide (1) Narrow (1) 2. Maximum foot-rotation position Normal (0) Externally rotated (1) Internally rotated (1) 3. Initial foot contact

□ Symmetric (0) □ Not symmetric (1)

Sagittal-Plane Motion

6. Initial landing of feet

 $\Box \text{ Toe to heel } (0)$ $\Box \text{ Heel to toe } (1)$ $\Box \text{ Flat } (1)$

7. Amount of knee-flexion displacement

□ Large (0) □ Average (1) □ Small (2)

8. Amount of trunk-flexion displacement

 \Box Large (0) \Box Average (1) \Box Small (2)

9. Total joint displacement in the sagittal

4. Maximum knee-valgus angle

□ None (0) □ Small (1) □ Large (2)

5. Amount of lateral trunk flexion

□ None (0) □ Small to moderate (1) **plane**□ Soft (0)
□ Average (1)
□ Stiff (2)

10. Overall impression

□ Excellent (0) □ Average (1) □ Poor (2)

https://www.researchgate.net/publication/51131028/figure/fig2/AS:276983490596866@1443049418228/Scori ng.sheet-for-the-Landing-Error-Scoring-System-Real-Time-LESS-RT-assessment-tool.png

Landing Error Scoring System

- Post-fatigue ACL reconstruction:
 - Higher percentage of errors compared to healthy controls⁶
- 829 elite youth soccer players²⁴:
 - Higher LESS associated with ACL injury
 - Cutoff: score > /= 5

https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTxWIRE_GTUn2F3tyJjmO7n67eUTM5vipEQaQ1 nCEgEA&s

Single leg hop (SLH)⁴

- 193 Division III student athletes (10 sports)
- Preseason screening
- Females:
 - > 10% R-L asymmetry
 - Foot/ankle injury: 4X more likely
- Males:
 - Distance >/= 75% of their height
 - Low back/LE injury: 3X more likely
 - What??

FMS

- Walbright³⁰
 - Preseason screening: FMS, YBT, SLH
 - 35 female collegiate volleyball and basketball players
 - Tests were NOT predictive of injury
- Zarei³⁴
 - Preseason screening: FMS
 - 131 volleyball players (13.83-16.5 yo)
 - Monitored for 6 months
 - Composite score </=14: significant predictor of injury

https://freshspectrum.com/wp-content/uploads/2012/02/Cherry-Picking-Data-1024x768.png

Functional Movement Screen

Letafatkar ¹⁹	Siupsinskas ²⁷
100 college students: 18-25 y.o.	169 elite female basketball players
Sports: soccer, handball, basketball	Sport: basketball
Preseason screening: FMS	Preseason screening: FMS, YBT-LQ, LESS **Performed each preseason for 4 years
 FMS composite score < 17 Lower extremity injury: 4.7X more likely during competitive season 	 FMS composite score: Significant difference between injured vs. uninjured groups Injured = 14.1 Uninjured = 15.4

Functional Performance Tests²⁸

100 adolescents: 14.4 +/- 1.6 y.o.

Sports: volleyball, basketball, soccer

Preseason screening, then monitored for 6 months

Functional Performance Tests:

- Triple hop for distance: R-L single leg power, landing mechanics
- Star excursion balance test: dynamic balance
- Double leg lowering maneuver: core stability
- Drop jump video test: jump/landing mechanics
- Multi-stage fitness test: cardiorespiratory fitness

Functional Performance Tests²⁸

- Calculated composite score for functional performance tests
- Significant positive correlation between functional performance tests and multi-stage fitness test in males
- Significant difference between injured and uninjured groups
 - Drop jump video test
 - Double leg-lowering maneuver
- Significant differences between injured and uninjured groups in males
 - Anterior reach on Star Excursion Balance Test
- Takeaways: capturing aerobic fitness, dynamic balance, jump-landing mechanics, and core endurance are relevant

Single leg squat

- Ugalde²⁹
 - 142 middle school and high school athletes
 - SLS 30 deg and 2D drop jump
 - SLS captured similar information as the 2D drop jump test
- Takeaways:
 - SLS and 2D drop jump test interrelated
 - If you don't squat well, then you don't jump well.

https://img1.daumcdn.net/thumb/R800x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocd .net%2Fdn%2FbHG9u9%2FbtqEk1BhqsX%2Fa26K95uC9CRcLPDaSWz1H1%2Fimg.jpg

Prone Plank¹⁴

Boys	Girls
 Age 12 5th percentile: 10.09 sec 50th percentile: 55.96 sec 80th percentile: 112.9 sec 	 Age 12 5th percentile: 9.49 sec 50th percentile: 43.76 sec 80th percentile: 68.76 sec
 Age 16 5th percentile: 15.94 sec 50th percentile: 57.50 sec 80th percentile: 132.2 sec 	Age 16• 5th percentile: 20.30 sec• 50th percentile: 65.98 sec• 80th percentile: 133.8 sec

• Normative data for adolescents: 2,970 healthy Pakistani students

Single leg stance (SLS)⁹

- Male/female collegiate athletes
- SLS < 10 sec
- 2.5X more likely to experience ankle sprain
- Moderate evidence

Ankle flexibility⁹

Asymmetry	Increased DF	Decreased DF	
U.S. Army Rangers	Belgian Army basic trainees	Elite junior basketball players	Wall
Asymmetry >/= 6.5 deg • Any MSK injury: 4.0X more likely • Overuse MSK injury: 5.1X more likely	Injury: 1.2X more likely	 Ankle DF < 36.5 deg More likely to develop patellar tendinopathy 	Tibial Tuberosity
*Systematic review: rated study as excellent methodology	*Systematic review: questioned significant difference between groups		Heel remains the remains

Hamstring* flexibility⁹

Male U.S. Army basic trainees	English professional soccer players	
Test: Sit and reach	Straight leg raise	
 Highest flexibility: Hamstring injury: 2.9X more likely 	 Decreased flexibility 30% MORE likely to experience injury compared to those with 	
 Lowest flexibility Hamstring injury: 3.3X more likely 	more flexibility	RULER
Takeaway: too much v	<mark>ersus too little</mark>	

https://www.topendsports.com/testing/images/sit-and-reach-at-home.jpg

Lower leg strength⁸

Asymmetry	Overall Strength
Isokinetic eccentric PF:DF strength	Decreased versus increased PF strength
 Asymmetry >15% Increased risk of ankle sprain in male professional soccer players 	 Decreased PF strength Predictive of Achilles tendon overuse injury in Belgian Army basic trainees Increased PF strength Independent risk factor for injury in male volleyball players

Takeaways: significant asymmetry, too much, too little

https://upload.wikimedia.org/wikipedia/commons/5/52/Exercise_Heel_Raise_One_Leg.png

Power

subjects

Professional soccer players

vertical jump

•

Highest percentage

Hamstring injury:

1.5X more likely

Decreased broad jump distance

Finnish military

- Severe acute injury: 2.8X more likely
- Overuse injury: 1.8X more likely
 **Moderate
 evidence

Takeaway: too much, too little

Speed⁹

Australian rugby players	FBI trainees
 Slower speeds 10m sprint: injury 10.3X more likely 40m sprint: injury 9.9X more likely 	 Slower speeds: 300m sprint: higher injury incidence

Speed is an independent injury risk factor

Cardiorespiratory endurance²⁰

Set distance for time (0.75-2 mi)	Timed shuttle run
Marine corps and FBI trainees	Rugby players and basic trainees
Poor performance:	Poor performance:
 Predicts MSK injury for both 	 Predicts MSK
genders	<mark>injury in males</mark>
 Strong evidence 	 Strong evidence

*Poor aerobic fitness is an injury risk factor

Running-related injuries¹⁵

Strongest predictors	Step rate	YBT
 Sex: female>male 	High school runners <a href="mailto: 	Anterior reach asymmetry > 2.5 cm
 <u>History of previous</u> running-related injury 	 Shin injury: 7X more likely College runners Bone shin injury risk 	 Running-related injury: 6X more likely Posteromedial asymmetry >/= 5.2 cm
	 5% increase for each step/minute dropoff 	 Running-related injury: 5X more likely

Takeaways: check step rate, YBT

Single leg wall sit and questionnaire³²

- Preseason screen: NCAA collegiate football players
 - Single leg wall sit (about 90 deg knee flexion): average hold = 28 sec
 - Oswestry Disability Index >/= 4
 - Starting 1 or more games
- >/= 2 factors: significant increased risk for core or lower extremity injury

**Unique: combined physical measures, games played, and <u>self-perception of</u> <u>preparticipation functional tatus</u>

Base Level Screen example

- Beighton Score
- Multisegmental flexion (SFMA)
- Multisegmental rotation (SFMA)
- Single leg stance: EO, EC
- Single leg stance: UE, LE reaches
- Standing knee lift
- Unilateral heel raise
- Bodyweight squat: arms crossed
- Single leg squat or split squat
- Closed chain ankle DF
 - Tandem stance or weight bearing lunge test (limited DF: <10cm³)

Higher Level Screen

- YBT-LQ
- Vertical jump / Single leg hop
 - Drop squat: fast versus slow
 - Drop squat: heel(s) elevated vs flat
- Sport-specific performance testing
- Introduce cardiorespiratory demand, then redo screen

Example: Squat Dysfunction Breakout

- Change arm angle: air squat
- Change foot position / hip width
- Change ankle DF and anterior core demand
 - Elevate heels on half foam roll
- Ankle mobility: weight bearing lunge test
- Remove balance demands:
 - Quadruped rock back to heels
 - Happy baby pose (grab shins)
- Break down hip, knee, ankle, T-spine mobility
- Anterior chain trunk endurance: prone plank

SFMA: Top Tier examples

Multisegmental flexion²⁶

- Can they touch their toes?
- Posterior weight shift?
- Sacral angle >/= 70 deg?
- Purpose: posterior chain extensibility
- Archetype for hip hinge

Multisegmental rotation²⁶

- Pelvic rotation >/= 50 deg?
- Torso rotation >/= 50 deg?
- Purpose: quick screen of global rotation
- Archetype for rotational sports (e.g., tennis, baseball)

Balance Screen

- SLS: UE, torso, LE¹¹
 - Arms overhead: move 1 arm to side
 - Arms in front: move 1 arm to side
 - Arms in 90/90: turn upper extremities/torso while keeping pelvis forward
 - Arms in T position: lower extremity reach (ant, post, lateral, posteromedial)
- Qualitative: amount of sway, loss of balance, excessive tension¹¹

Standing Knee Lift

https://static.vecteezy.com/system/resources/previews/025/868/478/original /woman-doing-standing-knee-raises-abdominal-exercise-vector.jpg

- Arms can be in T position
- Balance, hip flexion control, lumbopelvic control
- Archetype: running, sprinting, kicking
- Breakouts:
 - Seated knee lift (arms in T position)
 - Supine hip flexion with contralateral hip/knee extension
 - Modified Thomas test

Takeaways

- In general, the more injury risk factors you have, the higher your risk of injury⁷
- Let data inform your decisions, but don't ignore your clinical judgment or what has worked for you in the past.
- Apply common sense inferences: a bad squat leads to a bad jump, which leads to increased injury risk.
- Reference movement hierarchy to determine how to progress or regress athlete based on screening results.
- Research and normative data are difficult to infer for youth athletes due to multiple variables: age, gender, sport, position, etc.

References:

- 1. Alemany JA, Bushman TT, Grier T, et al. Functional Movement Screen: pain versus composite score and injury risk. *Journal of Science and Medicine in Sport*. 2017. doi:10.1016/j.jsams.2017.08.001
- 2. Bahr R. Why screening tests to predict injury do not work and probably never will...: a critical revv
- 3. Bird S, Markwick WJ. Clinical commentary: musculoskeletal screening and functional testing: considerations for basketball athletes. *The International Journal of Sports Physical Therapy*. 2016; 784-802. Accessed April 16, 2024.
- 4. Brumitt J, Heiderscheit BC, Manske RC, Niemuth PE, Rauh MJ. Lower extremity functional tests and risk of injury in division III collegiate athletes. *The International Journal of Sports Physical Therapy*. 2013; 8(3): 216-227.
- 5. Chalmers S, Fuller JT, Debenedictis TA, et al. Asymmetry during preseason Functional Movement Screen testing is associated with injury during a junior Australian football season. *Journal of Science and Medicine in Sport*. 2017; 20: 653-657. doi:10.1016/j.jsams.2016.12.076
- 6. Chimera NJ, Warren M. Use of clinical movement screening tests to predict injury in sport. *World Journal of Orthopedics*. 2016; 7(4): 202-217. 10.5312/wjo.v7.i4.202.
- 7. Cook G, Hall J, Cook M. Changing perception. In: *The Business of Movement: Principles, Patterns, and Productivity*. On Target Publications; 2022: 41-66. Accessed April 16, 2024.
- De La Motte SJ, Gribbin TC, Lisman P, Murphy K, Duester PA. Systematic review of the association between physical fitness and musculoskeletal injury risk: part 2 – muscular endurance and muscular strength. *Journal of Strength and Conditioning Research*. 2017; 31(11): 3218-3234.
- De La Motte SJ, Lisman P, Gribbin TC, Murphy K, Duester PA. Systematic review of the association between physical fitness and musculoskeletal injury risk: part 3 – flexibility, power, speed, balance, and agility. *Journal of Strength and Conditioning Research*. 2019; 33(6): 1723-1735.
- 10. Devdre TS, Shaffer SW, Goffar SL, et al. Identification of risk factors prospectively associated with musculoskeletal injury in a warrior athlete population. *Sports Health: A Multidisciplinary Approach*. 2020; 12(6): 564-572. doi:10.1177/1941738120902991
- 11. Elphinston J. Functional assessment. In: *Stability, Sport and Performance Movement: Practical Biomechanics and Systematic Training for Movement Efficacy and Injury Prevention*. Second edition. Lotus Publishing; 2018: 97-141. Accessed April 13, 2024.

References

12. Functional Movement Screen Level 2 Version 12.5 Course Manual

13. Guan Y, Bredin SSD, Taunton J, et al. Risk factors for non-contact lower-limb injury: a retrospective survey in pediatric-age athletes. *Journal of Clinical Medicine*. 2021; 10(14). doi: 10.3390/jcm10143171

14. Hamdani SMZH, Zhuang J, Hadier SG, Tian W, Hamdani SDH, Shireen S, Fatima SU, Kazmi S. Normative reference standard for core muscular endurance of adolescent 12-16 years from South Punjab, Pakistan: a cross-sectional study. *Pak J Physiol*. 2022; 18(1): 3-8. http://www.pps.org.pk/PJP/18-1/Hamdani.pdf. Accessed April 12, 2024.

15. Joachim MR, Kuik ML, Krabak BJ, Kraus EM, Rauh MJ, Heiderscheit BC. Risk factors for running-related injury in high school and collegiate crosscountry runners: a systematic review. *Journal of Orthopaedic & Sports Physical Therapy*. 2024; 54(2): 120-132. doi:10.2519/jospt.2023.11550.

16. Kiesel KB, Butler RJ, Plisky PJ. Prediction of injury by limited and asymmetrical fundamental movement patterns in American football players. *Journal of Sport Rehabilitation*. 2014; 23: 88-94. doi:10.1123/JSR.2012-0130

17. Kozlenia D, Domaradzki J. Prediction and injury risk based on movement patterns and flexibility in a 6-month prospective study among physically active adults. *PeerJ*. 2021. doi:10.7717/peerj.11399

18. Lehr ME, Plisky PJ, Butler RJ, et al. Field-expedient screening and injury risk algorithm categories as predictors of noncontact lower extremity injury. *Scandinavian Journal of Medicine & Science in Sports*. 2013; 23: 225-232. doi:10.1111/sms.12062

19. Letafatkar A, Hadadnezhad M, Shojaedin S, Mohamadi E. Relationship between functional movement screening score and history of injury. *The International Journal of Sports Physical Therapy*. 2014; 9(1): 21-27. Accessed April 16, 2024.

20. Lisman PJ, De La Motte SJ, Gribbin TC, Jaffin DP, Murphy K, Deuster PA. A systematic review of the association between physical fitness and musculoskeletal injury risk: part 1 – cardiorespiratory endurance. *Journal of Strength and Conditioning Research*. 2017; 31(6): 1744-1757.

21. Monaco JT, Schoenfeld BJ. A review of the current literature on the utility of the Functional Movement Screen as a screening tool to identify athletes' risk for injury. *Strength and Conditioning Journal*. 2019; 41(5).

22. Nilstad A, Andersen TE, Bahr R, Holme I, Steffen K. Risk factors for lower extremity injuries in elite female soccer players. *The American Journal of Sports Medicine*. 2014; 42(4): 940-948. doi: 10.1177/0363546513518741.

References

23. Onate JA, Everhart JS, Clifton DR, Best TM, Borchers JR, Chaudhari AMW. Physical exam risk factors for lower extremity injury in high school athletes: a systematic review. *Clin J Sport Med*. 2016; 26(6): 435-444. doi:10.1097/JSM.000000000284.

24. Padua DA, DiStefano LJ, Beutler AI, de la Motte SJ, DiStefano MJ, Marshall SW. The landing error scoring system as a screening tool for an anterior cruciate ligament injury-prevention program in elite-youth soccer athletes. *Journal of Athletic Training*. 2015; 50(6): 589-595. doi: 10.4085/1062-6050-50.1.10.

25. Patel DR, Yamasaki A, Brown K. Epidemiology of sports-related musculoskeletal injuries in young athletes in United States. *Translational Pediatrics*. 2017; 6(3): 160-166. doi: 10.21037/tp.2017.04.08.

26. Selective Functional Movement Assessment Level 1: Version 26.3 course manual

27. Siupsinskas L, Garbenyte-Apolinskiene T, Salatkaite S, Gudas R, Trumpickas V. Association of pre-season musculoskeletal screening and functional testing with sports injuries in elite female basketball players. *Scientific Reports*. 2019; 9. https://doi.org/10.1038/s41598-019-45773-0. Accessed April 16, 2024.

28. Smith J, DePhillipo N, Kimura I, Kocher M, Hetzler R. Prospective functional performance testing and relationship to lower extremity injury incidence in adolescent sports participants. *The International Journal of Spots Physical Therapy*. 2017; 12(2): 206-218.

29. Ugalde V, Brockman C, Bailowitz Z, Pollard CD. Single leg squat test and its relationship to dynamic knee valgus and injury risk screening. *American Academy of Physical Medicine and Rehabilitation*. 2015; 229-235. http://dx.doi.org/10.1016/j.pmrj.2014.08.361.

30. Walbright PD, Walbright N, Ojha H, Davenport D. Validity of functional screening tests to predict lost-time lower-quarter injury in a cohort of female collegiate athletes. *The International Journal of Sports Physical Therapy*. 2017; 12(6): 948-959. doi: 10.16603/ijspt20170948.

31. Wang D, Chen J, Lai W, et al. Predictive value of the functional movement screen for sports-related injury in NCAA division 1 athletes. *The Orthopaedic Journal of Sports Medicine*. 2017; 5(3). doi:10.1177/2325967117S00132

32. Wilkerson GB, Colston MA. A refined prediction model for core and lower extremity sprains and strains among collegiate football players. *Journal of Athletic Training*. 2015; 50(6): 643-650. doi: 10.4085/1062-6050-50.2.04

33. Winkelman N. Learn this. In: The Language of Coaching: The Art & Science of Teaching Movement. Human Kinetics; 2019: 6-9. Accessed April 11, 2024.

34. Zarei M, Soltanirad S, Kazemi A, Hoogenboom BJ, Hosseinzadeh M. Composite functional movement screen score predicts injuries in youth volleyball players: a prospective cohort study. *Scientific Reports*. 2022; 12. doi: 10.1038/s41598-022-24508-8